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ABSTRACT: Meyman's modified Theorem I is proved.
It is used to lower the upper Froissart-Martin
limit for the scattering amplitude f(e) = f

(s,t = 0) in various assumptions concerning the
behavior of H(s) = Imf(s)/Ref(s) for physical
values of ¢ » a provided that in a striectly
formulated sense_ there are no abnormally strong
oscillations of f(s). Here we make use of the
analytic functionality of the amplitude only

in the upper s-half-plane. In the proof we

take into account that the amplitude f(s) for

the real values of s is a generalized rather
than an ordinary function. This result supports _
those recently obtained by Khuri, Kinoshita

and Vernov. It is extended to the case of
arbitrary binary reactions. The advantages of
introducing Meyman asymptotic amplitudes are
pointed out. '

INTRODUCTION

A few years ago, usfhg a rather general assumption of the
correctness of the Mandelstam concept, which has yet to be strict-
ly proven, Froissart [1] obtained the upper amplitude limit

(1)
|F(s)] < Of(sln2s).
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Numbers in the margin indicate pagination in the foreign text.

1 This study was reported at the Conference on the Axiomatic
Approach to the Theory of Unit Particles, On April 4, 1968, in
Kiev.

2 In this article we will not differentiate between 8 = the square
of the energy in the center of mass system and ¥ = the energy in
the laboratory system, as long as they coincide asymptotically

at large values of s, which are the only ones that will concern

us here.
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Not long ago, Martin [2] succeeded in a sufficiently strict
justification of this limit on the basis of the fundamental post-
ulates of the quantum field theory, and therefore it is possible
to call it absolute. Khuri and Kinoshita [3], using certain
supplementary assumptions, directly verified through experiments,
succeeded in obtaining various relative upper limits, by applying,
besides analytic functionality and unitarity, cross-symmetry and
real similarity. In particular, they showed that, if the amp..~-
tude of elastic scattering of a truly neutral scalar particle on
another scalar particle satisfies the 1imit (1), and if, further-
more, beglnnlng with any €0 where 8 + oo along the real axis,

|H(s)] < ctg (m), 0<a< b2,
" H(s)==1mf(s)/Ref(s), (2)

(the case where o + % corresponds to a predominance of Re f(s)
over Im f(s)), then, at physical values of 8 + .

[F(s)] < O(s"~**In%s). (3)

Here we used the "local" method of introducing the auxiliary func-

" tion and we assumed, in accordance with the requirements of

Meyman's Theorem 1, the absence, as we shall say, of strong /31
oscillations of the amplitude f(s) at physical values of s - w .

The exact meanlng of thls term is given in [3] and will be further-
explained in Section l

Very recently, Vernov [L4], using the "integral'" method of
introducing supplementary functions and the same Meyman's Thecrem
1, succeeded in yet further reinforcing this result of Khuri and
Kinoshita. He showed, using the same assumptions (1) and (2)
(the supplementary assumption H(8) < 0 contained in (4) is actually
superfluous), but with no restriction on possible amplitude oscilla-

- tions over an infinite sequence of physical points s;, tending

 toward infinity, that

[Fs)] < O (s}, (%)

However, if we use sufficiently large physical values of s, in-
stead of (2) and the amplitude sdtisfies the condition,

cg(nf)<s H(s) < clg(na), O0<P< l‘/2. (5)

‘then result (4) is amplified even more:



1f(s)) < O(s7 4%, (5)

Furthermore, Khuri and Kinoshita [3], in the same assumption
of the absence of strong amplitude oscillations showed that if a
in (2) disappears, but at sufficiently large physical values of s,

|H(s)] < O(In's), (7)
where § > 0 may be arbitrarily small, then
1)< Osin™s), (8)

where M > 0 is an arbitrarily high number. But in [5] it was
shown that the same result for (8) is obtained even if we use
far more liberal restrictions on the possible amplitude oscilla-
tions.

As long as we have serious grounds to consider [6,7] that the
general principles of the quantum field theory (and even of Mandel-
stam's assumption) do not place any restrictions on the possible ‘
amplitude oscillations, it i1s essential to determine whether or
not it is also impossible to obtain the upper limits (4) and (6).
for all sufficiently large physical values of s when using sig-
nificantly more liberal‘assumptiqps concerning possible amplitude
oscillations with reference to the absence of strong oscillations. -
It will be shown below that this goal has been reached, with proof
that in (4), for all sufficiently large physical values of s, the
condition H(s) < 0 is unnecessary. Furthermore, we shall demon-
strate that all our initial assumptions can .be completely grounded
in physical fact.

1. The Necéssary Theorem

To begin with, we shall consider that amplitude is continuous
at the border of the holomorphic region. This unjustified restric-
tion will be wholly discarded in Section 3., In order to broaden
the general initial assumption [3] of the absence of strong ampli-
tude oscillations at physical values of 8 >~ o , we first of all
shall somewhat modify Meyman's Theorem 1.

Modified Meyman's Theorem 1. /32

(a) Let the function g(s) be holomorphic in the upper s-half-
plane, possibly, with a certain finite part cut off; let it be
continuous in this region and at its boundary (i.e., with the part
of the real axis at a sufficient distance); let it be bounded within



this region by an arbitrary linear exponeni:3 and let g(&) » 0 when
8 > + o on the real axis;

(b) Let the function g(s) satisfy cross-symmetry in the form
gt (=) =g (o) (9)
(c) Beginning at a certain sufficiently high value of sj.
l"](s)l"—"*Ilf‘ng(s)/Reg(_s)[>tg(na), o<a< 1/2, (10)

(d) Let the transform of the upper gemicircle with radius s,
which is defined by the function g(@::,/gwjg , intersect the
the real axis of the g'-plane at the point u > 0, and

(e) 1let there exist as many small positive values for e=2(s)

and g =¢() » as for all physical values of s > gy
ow)y>e| u? +€lg )2, u<u < u, (11)
where @ (u') = the shortest distance from the point u' to the

transform of the [sg, s8] segment of the real axis, which is de-
fined by the function g'(s) (cf. the Figure, where it is shown

that g'(s) satisfies restriction (10) for o = %); inequality (11)
can obviously be used so:.long as the g(s) function does not os- -
cillate, as we shall say, to an abnormally large degree.

Then, at physical values of 8 + oo .
lg@E) < 0™ (12)

‘This . theorem is proved to be the basis of inequality (11)
in Hersch's [9] inequality '

Uy

du’ P s
X ey >z (§§> (13)

We. point out that the exponent s in (12) depends only on e and not
on £'. '

8 This condition for bounding g(s) with an arbitrary linear ex-
ponent can be substituted by the weaker condition (%), presented

in reference [8]. -



Inequality (12), naturally, is less restrictive than the proof
of Meyman's Theorem 1, which is derived from (12) using € = 1.
However Mayman's Theorem 1 requires that g(s) fulfill condition
(11) at € = 1 (we shall say in this case that g(s) is free of strong
oscillations). 1Inequality (12) requires only that (11) be satisfied
with an arbitrarily small value of € > 0 [in this case we say that
g(s) is free of abnormally strong oscillations (cf. Figure)].

We extend this terminology also to f(s) functions which do
not tend to infinity at physical values of 8 - ® . We shall say
that f(s) is free of strong oscillations if it can be represented
as the product of a continuous function and a g(s) function satis-
fying (11) with €' = 1. If in this definition we do not reguire
that e’ = 1, then we shall speak of the absence of abnormally strong
oscillations of f(s). The essence of the matter is that, in order
to prove (4) or respectively (6), as will be shown below, inequal-
ity (12) is sufficient, and there is no need to appeal to a stricter
proof of Meyman's Theorem 1.

2. Restrictions on Amplitude 33
Now we shall indicate the general requirements which the
amplitude f(s) must satisfy.

1. The amplitude f(s) must be holomorphic in the upper half-
plane (possibly, with a certain finite part cut off) and bounded -
there by an arbitrary linear exponent. This condition follows
both from Meyman's [10] principle, of localizability and from
Lomsadze and Krivskiy's [11, 8] formulation of the principle of
microcausality. '

@ Figure: The Horizontal Lines Show the Area
that is Forbidden for the g'(s) Curve from
Point sy to Point 8 for the Case Where

e = ¢! = 1 (Considered in [3]); the Vertical
Lines Denote the Forbidden Area in the Case
Where € = ! 5 k.

ul

2. The amplitude of f(8) must be continuous in the holomorphic
area and at its boundary (iie., with the real axis at a sufficient
distance). This condition together with condition 1 assures the
applicability to various auxiliary functions (which will be con-
"structed below on the basis of the f(s) amplitude) of the General-
ized Maximum Principle of Fragmen, Lindelef and Nevanlinna, which
guarantees satisfaction of Hersch's inequality (13) and the condi-
tions of Meyman's . Theorem 1,

3. The amplitude f(s) must satisfy cross-symmetry in the form



F(—s)=F@) (14)

where the left-hand side represents the analytic continuation from
the upper part of the rlght -handed semi-axis to the upper part of
the left-handed semi-axis.

In Section 3 we shall turn to the general conditions of the
analytic function imposed on amplitude in order to weaken it
significantly.

Then, on the basis of the Modified Meyman s Theorem 1, we can
prove the following:

Theorem 1. If the amplitude f(s) does not oscillate to an
abnormally large degree and if it satisfies the general properties

1-3 and if inequalities (1) and (2) are correct, then at sufficient-

ly large physical values of g

1F(9)] < O (=24,

(15)
no matter how small the value of § > 0.
Proof. For the null-order iteration, let us construct (by
the "local method") the auxiliary function
g,(s) = f(s)s™ '“’2(lns 2y, y>2 O<args<m. (16)

The function gy (8) fulfills requirement (a) owing to both condi-
tions 1 and 2 and restriction (1) for the amplitude f(s). It
fulfills condition (b) owing to (1l4) and condition (c¢) owing to
restriction (2). One can always succeed in satisfying requirement
(d) by one's choice of the sign of gg (s). Furthermore, as long
as at large physical values of s

18, () = 1F ()]s a7, (17)

since rﬂn‘w is continuous at large values of s, requirement (d)
imposes very broad restrictions on the behavior of the amplitude
f(e) at high energies, so broad that they tend to vanish in the
absence of abnormally strong oscillations.

Thus, according to the Modified Meyman s Theorem 1, at suffi-
ciently high physical values of s

Igo(8)1<0(s“°f’) (18)



and consequently,
1F ()] < O(s'= In**s), (19)

where 65 > 0 is arbitrarily small.

For the (n + 1)th iterational interval we shall introduce
the auxiliary function '

g, ( 9=F@® s—l+ﬂg—-leln(l~ﬁn_x’)/2 (Ins — in /2)-‘—7, (20)

where

B,=2a[l —(1—e2yH] ° (21)

For this function

() =i lmg, (VReg, () > tgln (@ — Bl By =all—(1—e2y . (22)

At sufficiently large values of s

-

12,)] = 17 (3]s

Pt v, (23)

where §4H%flﬁ*s is continuous at large values of s. Consequently,
according to the Modified Meyman's Theoreml, at sufficiently high
physical values of s

-—-e(u-.6,,) »

2.1 < 06" (24)

and this means that, in fact, at high physical values of s,

1F (9] < 10" 1), (25)

. Insofar as n can be arbitrarily large, there follows immediately
the necessary result (15).

Here it is necessary to put special emphasis on the fact that
each of the g,(s) functions must be considered free of very strong
oscillations which would be capable of violating inequality (11).



It is important, however, that on account of the smoothness of the
function . sMB..ln¥s! at arbitrary values of s, this requirement
is automatically fulfilled, if even one of these functions, let

us say gg (8), satisfies inequality (11).

We shall show that inequality (22), strictly speaking, can be
satisfied to an accuracy on the order of only  -O(ln™'s) . This
indicates that in (22) we must make the substitution e&—e+O(in's),
However, it is not difficult to see that the consideration of these
terms does not change the result of (25) and, consequently, the
final result of (15). The following theorem can be proved to be
completely analogous. -

Theorem II. If the amplitude f(s) does not oscillate to an
abnormally great degree and if it satisfies the general properties
1-3, and if inequalities (1) and (5) are accurate, then at suffi-
ciently large physical values of g

()] < O s+, (26)

-

We shall make a few remarks concerning the final result of
(15) and (26). First of all, this result would not change if,
instead of inequality (13), we used the weaker inequality of
Nevallinna (cf. (A.9) in reference [3]). In the second place,
this result does not depend either on €, or on e’. Thirdly, all
the results obtained above are true not only at £ = 0, but also
at an arbitrarily determined physical value of ¢t < 0, for which
the upper limit (1) 1is all the more correct. Finally, in the
fourth place, the assumption concerning the true neutrality of one
of the scattering particles is insignificant, and instead of the
cross-symmetry in (1l4), we could use cross-symmetry in the follow-
ing form (cf. for instance [13]): .

fh(--—s.)zf"(s), (27)

where the expomnents I and II indicate respectively the reaction
and the cgross-veaction. In this case it would be necessary to
introduce the symmetrical and antisymmetrical amplitudes.

=2 (s) + 1O ) =27 — O, (28)

~each of which will fulfill the general properties 1-3 and in par-
ticular, the cross-relationship in the form it has in (14). The
upper limit in (15) or, alternatively, (26) will then be correct
for each of the amplitudes fI (8) and flI(e), if each of the amp-
litudes f + (g) and f - (g) does not oscillate to an abnormally
great degree and if the following inequalities are satisfied:
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| 1,6 <ctga),
H, (5= {mf,/Re f, =+ (m '+ Im i‘ll)‘ﬁ\r(Re ' + Re f)*! (29)

or, alternatively, the inequalities
ctg(@h) < H, (5) < ctg (7o), (30)

The extension of these results to the case of scattering of
particles with spin does not present any problems, if we use in-
variant amplitudes. Let us consider, for instance, the case of
m N-scattering, for which there exist four (allowing for the iso-
topic variables) invariant amplitudes: 4 + (8) and B + (&), which
satisfy the cross-relationship (compare with [14]):

A% () = T A* (— ), B*(9) = £ B* (—5). (31)

The results derived by us are here applied to each of the four
. functions: A+@) A”m) B*@) and iB~(s) , which satisfy cross-
symmetry in it proper form (lu4).

3. Consideration of the Original Assumptions

Let us note first of all, that in order to prove all the above.
indicated results, generally speaking, there was no need for the
analytic function of the f(s) amplitude itself. It was sufficient
to use the analytic function of the asymptotic amplitude f o (s)
~assumed by Meyman [15,10], for which we use all the requirements
of the Generalized Maximum Principle of Fragmen, Lindelef and
Nevanlinna, which guarantees the correctness of the Modified Meyman
Theorem 1. However, here it is also necessary to satisfy the con-
dition of asymptotic equivalence of precise and asymptotic ampli-
tudes, i.e., to satisfy inequalities [13, 1274

gl <<O(s). (32)

The possibility of experimentally testing this requiréement was con-
sidered in [12]. We mention that the fruitful results of intro-
ducing asymptotic amplitudes, especially for non-binary reactions,

We note that the condition of asymptotic equlvalence given in
[10] is not conclu31ve.



have been repeatedly emphasized by us (c¢f. [5,8,13]). The introduc-
tion of such amplitudes permits us to apply, without change, all

the results of this article to the case of arbitrary non-binary
reactions. Here it is significant that the Froissart-Martin upper
limit (1) is correct, according to the optical theorem, also for

any arbitrary non-binary reaction.

Furthermore, for the purpose of freeing ourselves of the un-
justified assumption that the amplitude f(s) is continuous in and
at the boundary of the holomorphic region, we introduce the Modi-
fied Generalized Maximum Prineiple of Fragmen, Lindelef and Nevan-
linna, by which we reformulate this assumption in a somewhat weaker
form, in comparison with [16,17], but nonetheless on which is
sufficiently applicable to high-energy physics.

We shall indicate by I the simply connected region,,continuing
to infinity and restricted by two half-lines T''’ and T”, which form
an angle with the apex at the origin. Points belonging to T' we
shall designate as r', points belonging to I'" as ¢". Let cé and
t8 = points of determined sets o'’ and a” having harmonic absolute
or relative zero-dimensions. Let us consider the function f(z) to
be holomorphic within T, continuous at all {&Ea’ and all {'eao”
and bopnded within T in the vicinity of the finite points ' {eo
and "=a” . ‘Let us assume that in the vicinity of z = ®, the
function f(8) is uniformly bounded within T by an arbitrary exponent
of the order of a

1F()] < O™, (33)

Then we can accept the following:

Modified Fragmen-Lindelef-Nevanlinna Generalized Maximum Prin-
ciple. If f(¢') - a when ¢' - ® along an arbitrary sequence of
points, excluding the points of the null-set of o', and if f(z") > b
when ¢" - ® , then @ = b and f(z) » a is uniform within T.

The application of this principle to the scattering amplitude
f(e) (or to the nth asymptotic amplitude f,(s) [13]) is accomplished
by the following steps.

1. From Meyman's [10] "Principle of Localizability of from the
more liberal requirement of Lomsadze and Krivskiy's [11,8] formula-
tion of Bogolyubov's microcausality principle we obtain the homo-
morphism of the amplitude f(s) [or fu(s)] in the upper s-half-plane

and its boundedness within the upper s-half-plane by an arbitrary
" linear exponent. Here we make no a priori assumptions concerning
the stage of development of the generalized functions and in partic-
ular, we can not assume that they are moderate.

2. The principle of "Amplitude Observability" [12] guarantees
the boundedness of f(s) [and fyu(s8)] in the wicinity of the finite

10



‘physical points &. This principle consists of the physical require-
ment of the existence of "averaged amplitude"

F(s, As) = (F (), foe(s) (34)

as an ordihary function for any arbitrary small segment As containing
an arbitrary physical point 8. Here fpg (8) is the basic function;
it is real and non-negative-valued (let us say, "bell-shaped"), con-

centrated on the segment As, and satisfies the normalization require-
ment

. SfA,(s)ds=l. (35)
Due to natural physical considerations, it is required that the
"averaged amplitude" be bounded for any finite physical values of s: /3

|F (s, Bs) | < M(s), (36)
no matter how small As is.

On the basis of Fatu's [18] theorem, from the boundedness of
f(s) in the vicinity of the finite physical points s, there follows
the continuity of f(s) (and f,(s) ) at all finite boundary points
besides, possibly, sets of points having an absolute harmonic null
dimension.

-

8. From the polynomial boundedness of f(s) [or f,(s)] at s » o
along the real axis, excluding points of the null set, there follows,
by virtue of the Modified Fragmen-Lindellef-Nevanlinna Generalized
Maximum Principle, the amplitude's uniform polynomial boundedness
in complex infinity.

4., Furthermore, in order to prove various asymptotic equations
£19,13] which generalize Pomeranchuk's theorem, it is possible to
apply ordinary methods [15,19], stipulating, however, the elimination
of points of the null set from the real axis. Such elimination is
also essential for a strict proof of all the results in this article.
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